引用本文
  • 孙柯,吕佳颐,苏蓓琳,付莉莉,梅长林*,宋书伟*.低场磁共振成像技术在多囊肾病大鼠模型肾脏体积活体检测中的应用[J].第二军医大学学报,2019,40(3):311-315    [点击复制]
  • SUN Ke,LÜ Jia-yi,SU Bei-lin,FU Li-li,MEI Chang-lin,SONG Shu-wei.Application of low field magnetic resonance imaging technique in measuring kidney volume of polycystic kidney disease rats in vivo[J].Acad J Sec Mil Med Univ,2019,40(3):311-315   [点击复制]
【打印本页】 【下载PDF全文】 【HTML】 查看/发表评论下载PDF阅读器关闭

←前一篇|后一篇→

过刊浏览    高级检索

本文已被:浏览 42次   下载 48 本文二维码信息
码上扫一扫!
低场磁共振成像技术在多囊肾病大鼠模型肾脏体积活体检测中的应用
孙柯,吕佳颐,苏蓓琳,付莉莉,梅长林*,宋书伟*
0
(海军军医大学(第二军医大学)长征医院肾内科, 解放军肾脏病研究所, 上海 200003
*通信作者)
摘要:
目的利用低场磁共振技术测量多囊肾病大鼠的肾脏体积,探讨其在多囊肾病基础研究中的应用价值。方法将15只不同月龄的多囊肾病模型Han:SPRD大鼠麻醉后,利用低场磁共振技术测量其肾脏体积。肾脏轮廓由临床医师和设备工程师共同圈定,成像方法为T1加权成像,成像位置为肾脏横断面,利用图像处理软件计算肾脏体积。采用Pearson相关分析研究磁共振测量肾脏体积与解剖后实测体积、肾脏质量、肾脏质量/体质量比值、肾功能指标和囊肿指数的相关性。结果低场磁共振能够清晰地观察到Han:SPRD大鼠的肾脏,15只大鼠的磁共振测量体积分别为1.51、1.77、3.54、6.45、9.34、9.38、3.72、9.51、4.95、5.31、6.47、7.01、5.39、5.08、7.31 cm3,解剖后实测体积分别为1.50、1.70、2.90、5.00、7.00、7.02、2.50、7.10、4.70、4.90、6.50、6.70、4.20、4.90、7.00 cm3。磁共振测量肾脏体积与解剖后实测体积具有高度相关性(拟合优度R2为0.903 1),与肾脏质量、肾脏质量/体质量比值也存在较高的相关性(R2分别为0.912 8、0.777 9),与血清肌酐、尿素氮及囊肿指数均呈正相关(相关系数分别为0.86、0.85、0.61)。结论低场磁共振技术能够满足多囊肾病大鼠模型肾脏体积活体检测的需求,为多囊肾病的基础研究提供参考依据。
关键词:  磁共振成像  多囊肾疾病  大鼠  肾脏体积  活体检测
DOI:10.16781/j.0258-879x.2019.03.0311
投稿时间:2018-12-10修订日期:2019-02-10
基金项目:上海市科学技术委员会科技创新行动计划(16142203100,18142201600),上海市卫生和计划生育委员会青年项目(20154Y0112).
Application of low field magnetic resonance imaging technique in measuring kidney volume of polycystic kidney disease rats in vivo
SUN Ke,LÜ Jia-yi,SU Bei-lin,FU Li-li,MEI Chang-lin,SONG Shu-wei
(Department of Nephrology, Kidney Institute of PLA, Changzheng Hospital, Naval Medical University(Second Military Medical University), Shanghai 200003, China
*Corresponding author)
Abstract:
Objective To measure the renal volume of polycystic kidney disease rats using low field magnetic resonance imaging (MRI), and to explore its application value in the basic research of polycystic kidney disease. Methods Fifteen Han:SPRD rats with polycystic kidney disease of different ages were subjected to anesthesia, and the kidney volume was measured using low field MRI. The kidney profile was delineated by engineers and clinicians. The imaging method was T1-weighted imaging. The cross section of the kidney was imaged, and the kidney volume was calculated using image processing software. Pearson correlation analysis was used to analyze the correlation between the kidney volume measured by MRI and anatomical volume after dissection, kidney mass, the ratio of kidney mass to body mass, renal function indexes and cyst index. Results The kidney of Han:SPRD rats was clearly observed with low field MRI. The kidney volumes of 15 rats measured by MRI were 1.51, 1.77, 3.54, 6.45, 9.34, 9.38, 3.72, 9.51, 4.95, 5.31, 6.47, 7.01, 5.39, 5.08, and 7.31 cm3, respectively. The anatomical volumes after dissection were 1.50, 1.70, 2.90, 5.00, 7.00, 7.02, 2.50, 7.10, 4.70, 4.90, 6.50, 6.70, 4.20, 4.90, and 7.00 cm3, respectively. The renal volume measured by MRI was highly correlated with the anatomical volume after dissection, kidney mass and the ratio of kidney mass to body mass (goodness of fit[R2] was 0.903 1, 0.912 8 and 0.777 9, respectively), and was also positively correlated with serum creatinine, urea nitrogen and cyst index (correlation coefficients were 0.86, 0.85 and 0.61, respectively). Conclusion Low field MRI can be used to measure kidney volume of polycystic kidney disease rat models in vivo, providing a reference for the basic research of polycystic kidney disease.
Key words:  magnetic resonance imaging  polycystic kidney diseases  rat  kidney volume  in vivo detection